Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 463: 132936, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-37948782

RESUMO

Most nanozyme-based electrochemical sensing strategies depend on the catalytic formation of electroactive substances, while the electrochemical properties of nanozymes have rarely been explored. In this study, magnetic nanoparticles encapsulated metal-organic framework served as precursors to prepare bioinspired nanozymes with both laccase-mimicking activity and electroactivity. Owing to the strong affinity between thiram (THR) and Cu(II) active sites in the nanozymes, the binding of THR inhibited nanozyme catalytic activity toward catechol (CT) oxidation and enhanced nanozyme conductivity. A lower oxidation current (ICT) of CT was accompanied by a higher oxidation signal (ICu) of Cu(II), allowing a ratiometric electrochemical response of the electroactive nanozymes toward the incoming THR. The signal ratio (ICu/ICT) displayed a good linear relationship over a THR concentration range of 10.0 nM-3.0 µM with a limit of detection of 0.15 nM, and the entire THR detection process was rapidly accomplished within 5 min. The high sensitivity and selectivity of the developed electrochemical strategy guaranteed the reliable detection of THR in fruit, vegetable, and river water samples. This study provides new insights into the development of nanozymes for electrochemical analysis.


Assuntos
Lacase , Nanopartículas , Tiram , Oxirredução , Catálise
2.
Talanta ; 239: 123150, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34923252

RESUMO

Dual-signal strategy has great potential in improving the accuracy and sensitivity of cancer biomarker determination. However, most sensors based on nanomaterials as signal amplification usually output single detectable signal. It is still a challenge to achieve dual-signal sensing of biomarkers with nanomaterials as signal amplification. Herein, MnO@C nanocomposite was prepared with Mn-MOF-74 as precursor by pyrolysis. It possesses bidirectional electrocatalytic ability toward both oxidation and reduction of H2O2 for its fully exposed crystal facets. After loading AuNPs, MnO@C@AuNPs can connect aptamer (Apt) via Au-S and then as a signal amplification for the construction of sandwich-type aptasensor for dual-signal electrochemical sensing of cancer biomarker. Thus, taking mucin 1 (MUC1) as a model system. The aptasensor has the parallel output of differential pulse voltammetry (DPV) and chronoamperometry responses based on oxidation and reduction of H2O2, respectively, which implemented sensitive and accurate measurements to avoid false results. The linear response ranges of 0.001 nM-100 nM (detection limit of 0.31 pM) for DPV technique and 0.001 nM-10 nM (detection limit of 0.25 pM) for chronoamperometry technique were obtained. It opens up a new way to design elegant dual-signal aptasensors with potential applications in early disease diagnosis.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Nanocompostos , Neoplasias , Biomarcadores Tumorais , Técnicas Eletroquímicas , Ouro , Peróxido de Hidrogênio , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...